近年来,随着5G和智能化时代的来临及电子设备趋于小型化、集成化,电子设备的发热量成倍增加,这对系统的散热性能提出了更高的要求。导热界面材料是散热系统的关键材料,是连接芯片与散热器之间热量传递的桥梁。然而,用于热界面材料的聚合物,如环氧树脂、硅脂等,具有很低的导热系数(0.1~0.3 W/(m·K)),无法满足快速传热的要求。因此需要开发具有高导热的热界面材料,通常的方法是在聚合物基体中加入导热填料来实现高效的热传导。因为氧化铝来源广泛,价格较低,在聚合物基体中填充量大,具有较高的性价比,因此目前高导热绝缘硅胶材料主要以氧化铝为导热绝缘填料。
作为最大用量的导热填料Al2O3,目前制备的导热界面材料热导率基本在2~6W/(m·K)之间,要提高材料的热导率,势必从填充率和导热网络通道方面开发应用潜力,因此,Al2O3导热填料可在如下几个方面进行进一步研究以提高其应用性能。
结晶、形貌方面:提高结晶程度和颗粒形貌规整程度,不但有利于颗粒本身热导率,还可以降低粘度,增加填充率。
展开剩余60%研究复配工艺提高填充率和导热性能,即不同颗粒大小级配、不同形貌的复配。
通过有效的表面改性,改善Al2O3和有机聚合物直接的浸润性,从而提升Al2O3填充率。
目前市场上导热氧化铝填料主要包括致密度较高的高温烧结氧化铝(烧结温度1600~1700℃)和高温熔融氧化铝(熔融温度2050℃)两大类。高温烧结氧化铝按形貌又分为类球形氧化铝和角形氧化铝,高温熔融氧化铝即球形氧化铝。
球形氧化铝颗粒为5~50μm单晶体,颗粒形貌为球状,高填充率、高堆积密度,吸油率低等。但其在高温焰流下氧化铝相变很复杂,由此生产的氧化铝除主要为α相外,往往还含有δ相、θ相等杂相,而这是高热导率要求所不希望的。角形氧化铝颗粒形貌以具有尖锐的棱角为特征,生产成本低,转化率高,但纯度低,填充率低,电导高等导致了其导热材料导热系数低。类球形α-氧化铝相含量高、纯度高、表面光滑,但颗粒形貌为椭圆形,影响填充率,且产品成本较高。
基于不同形貌导热氧化铝体系稳定性、高性能、低成本等需求考量,通过实现球形、类球形、尖角形氧化铝填料紧密堆积,搭建导热网络结构,从而提升导热界面材料导热系数,制备出复合导热氧化铝填料复合材料有望得到广泛应用[5],市场需求会越来越大。
目前,在粉体颗粒填充导热高分子复合材料时为降低孔隙率,增大导热材料的导热性能的研究还未完善,如何提高粉体颗粒的堆积密度、降低孔隙率、提高热界面材料的导热性能是填充型导热高分子复合材料急需解决的问题。
尽管Al2O3导热系数相对不是太高,但其化学性质稳定,绝缘性能好,填充到聚合物中的粘度较低,可以得到很高的填充率,最重要的是价格相对较低,具有极高的性价比,因此Al2O3是导热填料中用量最多、用途最广泛的一种填料。
发布于:广东省广盛网-线上股票配资-配资开户-股票如何开杠杆提示:文章来自网络,不代表本站观点。